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1 Introduction
This is a brief note meant to describe the changes to the calorimetry code that we recommend. Accompa-
nying this note is a class diagram indicating how we think the system should fit together.  This diagram is
by no means complete.  It is designed to serve as a higher-level view of the system components.

2 Overview

2.1 Names
The diagram uses new class names.  Many of these classes have a direct relationship to the classes in the
existing code; sometimes the equivalence is nearly exact, and sometime the equivalence is very approxi-
mate.

PhysicsCalorData TOWER_COLLECTION

CalorData TOWE_BANK_DRIVER

CalorTower TOWE_BASE

PhysicsTower,Clusterable CALTOWER

Locations EVENT_ANNULUS_LOCATIONS

TowerThetaContainer Detector_Boundaries

CalorTowerKey TOWE_Key

CellKey TOWE_Key

ElectronicsKey Bank_Cal_Key

CalorGeometryNode Cal

2.2 Subsystems
The diagram shows four basic subsystems:

1. Creation of the CalorData objects.  This is the D-Banks converted to Energy for each of the towers
in the calorimeter.  CalMod carries out this process.  CalorData is meant to be stored in the event,
it is mostly just a fancy container that allows direct access to a tower given (ieta, iphi).  The per-
sistent form of CalorData could be (but need not be) TOWE.  Creating CalorData from the D-
Banks is fairly straightforward – make an instance of a TowerTypeX, fill it, and insert it into the
CalorData container.  Restoring the CalorData from disk using the TOWE format will probably
require a “ factory”  similar to the way it is currently done in order to automate the creation of the
TowerTypeX objects.  The diagram shows two forms of iteration that should be made available:



standard iteration through all the CalorTowers, and special iteration through CalorTowers from a
specific detector such as “Central”  (see DetIterator).  In the new code, CalorData should allow one
to get a CalorTower, not manipulate it directly as the current TOWE_BANK_DRIVER does.

2. The reconstructed calorimeter or PhysicsCalorData.  There is one PhysicsCalorData instance cre-
ated for each interesting combination of primary vertex, input source, and “calculator”  (to be
defined later). The PhysicsCalorData instances can be stored in the event (EventRecord).  The per-
sistent form of the PhysicsCalorData could be just the parameters used to create it (AbsParms, the
identifier of the CalorData object, the z position of the vertex, etc.), and not the actual Phys-
icsTowers.  This should be done if rebuilding it is as computationally cheap as indicating during
the review.  We think this may not actually be true if the input source is HEPG.  The concept of a
view has been introduced here to manage activities such as seed lists and clustering.  It is unclear
at the present moment whether or not the views need to be storable in the event.  For efficiency
purposes, the individual PhysicsTowers could maintain pointers to a list of CalorTowers used to
generate it.

3. The creation of the PhysicsCalorData object.  In the current code, there are really two types of cal-
culators, or “summers” .  The current code abstracts out a summer, used in determining the
centroid of a cluster.  This code is not present in the diagram and should be moved to the jet find-
ing package.  PhysicsCalorMaker controls the creation of the PhysicsCalorData.  A high-level
module such as JetMod should use the AC++ AbsParms or menus to determine the input source,
calculator, and perhaps the vertex.  The module can then create the correct instance of InputSource
(HEPG or CalorData based).  The module uses the input source and vertex to call “create”  in the
PhysicsCalorMaker, which makes a PhysicsCalorData object.  The input source appears like a
stream, where each call to “next”  produces enough information for the PhysicsCalorMaker to pro-
duce a PhysicsTower.  Each specific type of input source has a set of calculator that can be used
for summing energies. Note that the process of taking Monte Carlo generated “particles”  from
HEPG, and creating a PhysicsCalorData object is a detector simulation process. In time, many dif-
ferent PhysicsCalorMakers could be provided, each of which contains a different level of detail in
simulation, different tunable parameters, etc.

4. Geometry related classes.  All the geometry related classes should be moved from the Calor pack-
age to a CalorGeometry package.  The current Cal class needs to be changed to conform to the
new geometry model.  Two “keys”  should be present in the new system, one for accessing towers,
and one for accessing individual cells within a tower.   The keys are smart enough to indicate their
neighbors.  A set of  helper functions should be written to aid in the creation or filling of collec-
tions of neighboring keys.  The diagram also shows an iterator that allows one to go through all
the tower keys in the detector, or keys that pass conditions coded into a predicate.

3 Descriptions
Following is a brief description of the purpose of each class shown in the class diagram.

• CalorData: A container class that makes the calorimeter look like a big grid of towers, even though the
actual towers in the grid are different types. Provides all interesting types of access to the towers, such
as direct access by (ieta, iphi) and efficient iterating over distinct sets of towers.

• CalorTower: An abstract base class used to present all calorimeter towers as the same thing.  This con-
sists of methods to access data common to all towers, and virtual methods required to access tower
specific data (though polymorphism).

• CalMod: An AC++ module that runs over the D-Banks in the calorimeter, create instances of specific
CalorTowers, and inserts them into the CalorData.

• StorableObject: The EDM class that allows objects to be stored in the event, converted to persistent
form and reconstituted from a persistent form.



• DetIterator: An intelligent iterator that holds a predicate.  It allows the one to go through CalorTowers
held within an instance of CalorData.  The predicate will allow iteration only over all CalorTowers in a
particular detector.

• TowerTypeX: There is one concrete class for each of the various tower types ( X=[0,9]).  This is very
similar to the current system’s TOWER_TYPE[0-9] classes.  Basically it is a C++ view of the infor-
mation inside TOWE.

• PhysicsCalorData:  Another container class.  This class retains all the information that was used to
generate it.  This information includes the source (example is CalorData) identifier, the z location of
the vertex used, the input source name (algorithm name), and the input source calculator name (sub-
algorithm name).  The class also caches an instance of an “EventAnnulusLocations”  classes based on
the z location of the vertex.  The Locations instance is a transient object, not meant to be stored.  This
container class must provide fast direct access to a particular PhysicsTower.  The user must get a
PhysicsTower out of the container and use the PhysicsTower interface to manipulate it.  The class pro-
vides an iterator to go through all the PhysicsTowers in the PhysicsCalorData object. This is the class
most consumers of calorimeter information will use to perform physics tasks, so it should provide all
the necessary access mechanisms to make those tasks easy.

• PhysicsTower: This is a reconstructed calorimeter tower.  It is very similar to the current CALTOWER
class.

• Clusterable: The physics tower is broken up into two parts.  This class represents low-level, simple
quantities that can be used in clustering.  We envision that, in the future, things other then Phys-
icsTower will be considered clusterables, such as a cluster of PhysicsTowers.  Tools that manipulate
clusterables can then be produced that do not need to know if the items these work with are actually a
PhysicsTower or something else. This class should be useful in implementing flexible successive re-
combination (“KT”) jet algorithms.

• PCView: (PhysicsCalorView) This is a container of pointers to the PhysicsTowers.  The user can sort
on of these, or iterate though the elements.  Using the utility function to generate it, it can actually be a
standard STL list or vector of PhysicsTower pointers.

• Locations: This is essentially the same thing as the EventAnnulusLocations, except the user cannot
interact with the elements inside at the container level.  This is strictly a container of ThetaCalcs,
which are calculated with a given z-vertex.

• ThetaCalcs: This class provides all the important trigonometric calculations of the azimuthal location
of one tower (ieta), as measured from a given z location on the beam axis.

• PhysicsCalorMaker: This is an algorithm object that has the responsibility of creating a PhysicsCalor-
Data instance given an InputSource and the z location of a primary vertex.   It calls “next”  on the input
source, to get the input information, and creates a PhysicsTower, which it adds to the PhysicsCalor-
Data object it is producing.

• EnergyData: This is the calculated energy deposited in a specific tower, denoted by (ieta, iphi), used in
the creation of a PhysicsTower.

• InputSource: This is a generic source of tower energy information.  Derived classes implement the
reading of the actual tower source information.

• SourceHEPG: This is a HEPG input source.  The job here is to accumulate the energy from particles
into a tower grid.  The EnergyData is produce at each call of “next”  for the next tower in the grid. Dif-
ferent subclasses of SourceHEPG could provide different summing methods, smearing, more or less
detailed simulation, etc.

• SourceCalorData: This is the EnergyData information calculated from CalorData (the calorimeter).

• HepgCalculator: This is an abstract calculator class used to calculate the values in EnergyData for a
given grid cell in the SourceHEPG grid.

• Clump: A particular way of calculating the EnergyData at a specific grid position.



• Normal: Another particular way of calculating the EnergyData at a specific grid position.

• CalorCalculator: This is an abstract calculator used to calculate the values in EnergyData for a given
CalorTower.

• FourVec: This is a particular way of doing the conversion from CalorTower to EnergyData.

• StdTower: This is a particular way of doing the conversion from CalorTower to EnergyData.

• MinStdTower: This is a particular way of doing the conversion from CalorTower to EnergyData.

• TowerThetaContainer: This is essentially Detector_Boundaries in the current system, except that is
available everywhere as a singleton and that it appears as a container.  The user must ask the container
for a TowerTheta object at a given ieta.

• TowerTheta: This is the trigonometric values associated with a particular ieta, as measured from  z = 0.

• CalorGeometryNode: This is the main geometry system node that replaces the Cal class.  This class
directly supports looking up a tower or cell given a point in space.

• CalorTowerKey: This class knows about a tower position and it’s relationship to other towers

• CalorKeyIterator: A smart iterator that allows one to iterator over all the tower keys in the calorimeter,
or a specific set of keys given a predicate.

• CellKey: This class allows access to a particular cell in the calorimeter.  It also allow location of the
center of the cell.

• Index: This is just an (ieta,iphi) pair.

• ElectronicsKey: This is the geometry replacement for Bank_Cal_Key.

4 EDM Considerations
Since the CDF EDM is not expected to be complete until after the recoding recommended here, several
classes and functions should be created to simulate the new EDM classes.  The temporary classes include
StorableObject, StorablePointer<T>, ObjectHandle<T>.  A set of functions should be written to invoke the
various methods of StorableObject and create StorableObjects from the event instead of just searching the
event for the desired object.  An example of a creation function could be “retrieveCalorData(key, event)”
which returns an ObjectHandle<CalorData> instance.  In the new EDM, the job of retrieveCalorData()
would be to search the event for the CalorData object return it. If the object does not exist, it would be cre-
ated, stored in the event, and returned.  In the current system, the job will be to look for the banks required
to make the CalorData instance and then generate it.

We think it would be useful to consult with Rob Kennedy on features of the Event Model, in order to
minimize the amount of re-design and re-coding necessary to adapt to the new Event Model.

5 Iterator Notes
There are many code examples available that demonstrate use of iterator classes.  These examples also im-
plement the functions necessary to generate and fill views and use predicates.  Please come and talk with us
about designing and implementing the iterators shown in the diagram.

6 Other Notes
All the Classdef macros from ROOT need to be removed from the code.


